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Rémy Dutto Bi-level optimal control method and application 2023 1/24



Introduction

In collaboration with:

- Olivier Cots, IRIT, Toulouse

- Olivier Flebus, Vitesco Technologies, Toulouse

- Sophie Jan, IMT, Toulouse

- Serge Laporte, IMT, Toulouse

- Mariano Sans, Vitesco Technologies, Toulouse
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Cycle

We consider an Hybrid Electric Vehicle (HEV) on a predefined cycle, i.e. speed
and slope trajectories are prescribed.
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Figure: Worldwide harmonized Light vehicles Test Cycle (WLTC).

Requested wheels torque TqW (t) and rotation speed NW (t) are obtained with the
information of our vehicle (mass, wheel diameter, aerodynamic coefficient. . . ).
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Static model

Inputs of our static model:

Name Description Unit

Cost
mFuel Fuel consumption g

State
SOC Battery state of charge

Commands
Gear Gearbox selector
TqICE ICE torque N.m

External inputs
TqW Wheels torque N.m
NW Wheels rotation speed RPM

Figure: Schema of the selected HEV.
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d

dt
.
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Optimal control problem formulation

Objective: Minimize fuel consumption

The following Lagrange optimal control problem is considered:

(OCP) :



min
x,u

∫ tf

t0

f 0
(
t, x(t), u(t)

)
dt,

s.t. ẋ(t) = f
(
t, x(t), u(t)

)
t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t) ∀t ∈ [t0, tf ],

x(t0) = x0, x(tf ) = xf ,

where:

x = SOC (State Of Charge)

u =
(
TqICE ,Gear

)
f 0 is the instantaneous fuel consumption function

f describes the instantaneous evolution of the state of charge

Remark: f 0 and f are C1 with respect to x and u.
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Model properties

This problem and its implementation are complex:

Non autonomous (Nw and TqW )

Discrete (Gear) and continuous commands (TqICE )

Command bounds U(t) (ICE and EM rotation speeds, battery current . . . )

Tabulated data (torque losses, fuel consumption . . . )

Time horizon much larger than integration time step size ∆t

Coded in Matlab Simulink
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Pontryagin Maximum Principle

If (x , u) is solution of (OCP), it exists p ∈ AC([t0, tf ],R) and p0 ∈ {−1, 0} such
that (p, p0) ̸= 0,

ẋ(t) =
∂H

∂p

(
t, x(t), p(t), u(t)

)
t ∈ [t0, tf ] a.e.,

ṗ(t) = −∂H

∂x

(
t, x(t), p(t), u(t)

)
t ∈ [t0, tf ] a.e.,

and such that the maximisation condition is satisfied

H (t, x(t), p(t), u(t)) = max
u∈U(t)

H (t, x(t), p(t), u) t ∈ [t0, tf ] a.e.,

where H(t, x , p, u) = p0 · f 0(t, x , u) + p · f (t, x , u) is the pseudo-Hamiltonian.

Hypothesis 1

The extremal (x , p, u) associated to the solution (x , u) of (OCP) is normal, i.e.
p0 = −1.
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Pseudo-Hamiltonian system

The maximizing control is (assuming the argmax is unique)

u∗(t, x , p) = argmax {H (t, x , p, u) | u ∈ U(t)} .

The pseudo-Hamiltonian vector field is computed as follows:

H⃗(t, x , p) =

(
f
(
t, x , u∗(t, x , p)

)
,−∂H

∂x

(
t, x , p, u∗(t, x , p)

))

The exponential map expH⃗(t1, t0, z0) is the solution at time t1 of the Cauchy
problem {

ż(t) = H⃗ (t, z(t)) ,

s.t. z(t0) = z0,

where z = (x , p).
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Rémy Dutto Bi-level optimal control method and application 2023 9/24



Indirect simple shooting

The Pontryagin Maximum Principle gives necessary conditions leading to the
resolution of the following Two Points Boundary Value Problem

(TPBVP) :

 zf = expH⃗(tf , t0, z0)
s.t. πx(z0) = x0,

πx(zf ) = xf ,

where πx(x , p) = x .

The indirect simple shooting method aims to solve the (TPBVP) and is defined
as finding a zero of the shooting function

Ss : R2 −→ R2

z0 7−→
(

πx(z0)− x0
πx

(
expH⃗(tf , t0, z0)

)
− xf

)
.
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Motivations

The HEVs torque split and gear shift problem was solved by indirect simple
shooting method.

We aim to:

Speed up the computation

Decrease the number of computations

Reduce the sensitivity of the shooting function
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Indirect multiple shooting

The time interval [t0, tf ] is decomposed into t0 < t1 < · · · < tN < tN+1 = tf .

(TPBVP) is transformed to

(MPBVP) :

{
∀i = 0, . . . ,N, zi+1 = expH⃗(ti , ti+1, zi ),
s.t. πx (z0) = x0, πx (zN+1) = xf .

(1)

The corresponding shooting function is therefore

Sm : R2(N+1) −→ R2(N+1)
z0
z1
...

zN−1

zN

 7−→


πx(z0)− x0

expH⃗ (t1, t0, z0)− z1
...

expH⃗ (tN , tN−1, zN−1)− zN
πx

(
expH⃗ (tN+1, tN , zN)

)
− xf

 .
(2)

Sm is known to be less sensitive to the initial guess than Ss .
1

1
H.G. Bock and K.J. Plitt. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems.

IFAC Proceedings Volumes, 17(2):1603–1608, 1984
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Bi-level formulation

(OCP) is transformed into the equivalent Bi-level Optimal Control Problem:

(BOCP) :


min
X∈X

N∑
i=0

Vi (Xi ,Xi+1)

s.t. X0 = x0, XN+1 = xf

where X = (X0, . . . ,XN+1), X is the domain of admissible intermediate states

and Vi is the optimal value of (OCPi,a,b), where

(OCPi,a,b) :



Vi (a, b) = min
x,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt

s.t. ẋ(t) = f (t, x(t), u(t)) t ∈ [ti , ti+1] a.e.,

u(t) ∈ U(t) ∀t ∈ [ti , ti+1],

x(ti ) = a, x(ti+1) = b.
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Rémy Dutto Bi-level optimal control method and application 2023 13/24



Link with other methods

N +1: number of intervals and value functions
/
∆t : integration time step size

Condition Problem Methods

N = 0 TPBVP Simple shooting

N =
tf − t0
∆t

Optimization DP or Direct

Else MPBVP “Multiple shooting”

“Multiple shooting”: another way to get the same problem:
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Commutative diagram: Theorem

Theorem 1

Under suitable regularity assumption, the Pontryagin’s co-states and the value
function satisfy the following relations:1

∀i ∈ J0,NK,
∂Vi

∂a

(
x(ti ), x(ti+1)

)
= −pi (ti )

∀i ∈ J0,NK,
∂Vi

∂b

(
x(ti ), x(ti+1

)
= pi (ti+1)

where (x , p, u) is an optimal extremal of (OCPi,a,b).

1
Frank H. Clarke and Richard B. Vinter. The Relationship between the Maximum Principle and Dynamic Programming.

SIAM Journal on Control and Optimization, 25(5):1291–1311, 1987
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Commutative diagram: Necessary conditions

Denoting λ = (λ0, λf ), the Lagrangian of (BOCP) is

L(X , λ) =
N∑
i=0

Vi (Xi ,Xi+1)− λ0(X0 − x0)− λf (XN+1 − xf ).

If X is solution of (BOCP), we have ∀i ∈ {1, ...,N}

(
KKT

Conditions

)
=⇒


∂V0

∂a
(X0,X1)− λ0 = 0

∂Vi−1

∂b
(Xi−1,Xi ) +

∂Vi

∂a
(Xi ,Xi+1) = 0

∂VN

∂b
(XN ,XN+1)− λf = 0

(
+ Theorem 1

)
=⇒


p0(t0) + λ0 = 0

−pi−1(ti ) + pi (ti ) = 0

−pN(tN+1) + λf = 0
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Commutative diagram
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Proposed approach

The proposed approach is based on an approximation Ci of the value function Vi .

(BOCP) becomes an optimization problem

(Macro) :

 min
X∈X

N∑
i=0

Ci (Xi ,Xi+1)

s.t. X0 = x0, XN+1 = xf ,

to get the intermediate states X = (X1, . . . ,XN) and N + 1 independent optimal
control problems

(Micro) :


min
x,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ [ti , ti+1] a.e.,
u(t) ∈ U(t), ∀t ∈ [ti , ti+1],
x(ti ) = Xi , x(ti+1) = Xi+1.

Rémy Dutto Bi-level optimal control method and application 2023 18/24



Proposed approach

The proposed approach is based on an approximation Ci of the value function Vi .

(BOCP) becomes an optimization problem

(Macro) :

 min
X∈X

N∑
i=0

Ci (Xi ,Xi+1)

s.t. X0 = x0, XN+1 = xf ,

to get the intermediate states X = (X1, . . . ,XN)

and N + 1 independent optimal
control problems

(Micro) :


min
x,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt
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Pseudo-Hamiltonian system

Due to the numerical implementation, the maximized Hamiltonian cannot be
easily computed.

The maximizing control is computed according to

u∗(t, x , p) ∈ argmax
{
H (t, x , p, u) , u ∈ Ũ(t)

}
where Ũ(t) is a discretization of U(t).

The pseudo-Hamiltonian vector field is computed as follows:

H⃗(t, x , p) =

(
f
(
t, x , u∗(t, x , p)

)
,−∂H

∂x

(
t, x , p, u∗(t, x , p)

))

where
∂H

∂x
is calculated by finite differences.
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where Ũ(t) is a discretization of U(t).

The pseudo-Hamiltonian vector field is computed as follows:

H⃗(t, x , p) =

(
f
(
t, x , u∗(t, x , p)

)
,−∂H

∂x

(
t, x , p, u∗(t, x , p)

))

where
∂H

∂x
is calculated by finite differences.
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Pseudo-Hamiltonian flow and approximated value functions

A database of extremals is created by computing the flow of H⃗ over [ti , ti+1],
∀i ∈ J0,NK and for all z0 in a discretization of initial state and co-state space.

x

p
expH⃗ (t1, t0, ·)

Figure: Example of Hamiltonian flow.

Each transition cost Ci is modeled by a simple smooth neural network.
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(Macro) problem resolution

The intermediate admissible state X can be approximated by:

X =
{
X

∣∣ Xi+1 ∈
[
Xi −∆−

i ,Xi +∆+
i

]
,∀i = 0, . . . ,N

}
where ∆−

i and ∆+
i are two scalars depending on the interval [ti , ti+1].

Thanks to neural networks, ∇Ci can be computed by backward propagation.

(Macro) is solved by the Newton conjugate gradient from Scipy on Python.
The constraints in X ∈ X is taken into account through penalization.
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(Micro) problems resolution

(Micro) problems, that is
(OCPi,Xi ,Xi+1), are solved by
simple shooting method, with
the trust region dogleg algo-
rithm from fsolve on Matlab.

Thanks to Theorem 1,

ẑi = (Xi , p̂i )

with

p̂i = −∂Ci

∂a
(Xi ,Xi+1)

is a natural initial guess to find
a zero of the shooting function.
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Results
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Figure: State trajectories of the simple shooting and the bi-level methods.

Associated cost error: 0.34g (0.039%) and 1.71g (0.244%).
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Conclusion

Done:

New sub-optimal method based on bi-level decomposition

Link with other optimal control methods

Applied to industrial complex problem

Results (Proposed VS simple shooting method):

Small cost difference

More robust with proposed initialization

Speed up computation for online part

Next step:

Generalization: multiple cycles

More complex problem: thermal transient and steady state
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