Bi-level optimal control method and application

Rémy Dutto 1,2,3

¹IRIT: Institut de Recherche en Informatique de Toulouse

²IMT: Institut de Mathématiques de Toulouse

³Vitesco Technologies

Séminaire de Statistique et Optimisation, IMT

Introduction

In collaboration with:

- Olivier Cots, IRIT, Toulouse,
- Olivier Flebus, Vitesco Technologies, Toulouse,
- Sophie Jan, IMT, Toulouse,
- Serge Laporte, IMT, Toulouse,
- Mariano Sans, Vitesco Technologies, Toulouse.

Table of Contents

General framework

2 Main goals

- 3 Bilevel optimal control problem
- 4 A novel approach

5 Application

Table of Contents

General framework

Main goals

3 Bilevel optimal control problem

4 A novel approach

5 Application

Optimal control problem

We consider the following Optimal Control Problem in a general Lagrange form:

$$(OCP) \qquad \begin{cases} \min_{x,u} \int_{t_0}^{t_f} f^0(t, x(t), u(t)) \, dt, \\ \text{s.t. } \dot{x}(t) = f(t, x(t), u(t)), \quad t \in [t_0, t_f] \text{ a.e.}, \\ u(t) \in U(t), \quad t \in [t_0, t_f], \\ c(x(t_0), x(t_f)) = 0, \end{cases}$$

where:

•
$$f^0: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$$
 and $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ are C^1 ,

- $t_0 < t_f$ are fixed,
- $U(t) \subset \mathbb{R}^m$ is a nonempty closed set for every $t \in [t_0, t_f]$, with regularity assumptions,¹
- $c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^p$ is C^1 , with $p \le 2n$ and is a submersion on $c^{-1}(\{0\})$, *i.e.* c'(a, b) is surjective for all pair (a, b) such that c(a, b) = 0.

¹(cf. [Cesari, 1983, Chapter 4.2, Remark 5] for more information)

Pontryagin's Maximum Principle

If (x, u) is solution of (OCP), there exists $\lambda \in \mathbb{R}^p$, the costate $p \in AC([t_0, t_f], \mathbb{R}^n)$ and $p^0 \leq 0$ such that $(p, p^0) \neq 0$, the Hamilton's dynamic is satisfied:

$$\begin{split} \dot{x}(t) &= \nabla_p h\big(t, x(t), p(t), u(t)\big) \qquad t \in [t_0, t_f] \text{ a.e.,} \\ \dot{p}(t) &= -\nabla_x h\big(t, x(t), p(t), u(t)\big) \quad t \in [t_0, t_f] \text{ a.e.,} \end{split}$$

the maximisation condition is satisfied:

$$h(t, x(t), p(t), u(t)) = \max_{w \in U(t)} h(t, x(t), p(t), w)$$
 $t \in [t_0, t_f] \text{ a.e.},$

and the transversality condition is satisfied:

$$\left(egin{array}{c} -p(t_0) \\ p(t_f) \end{array}
ight) - c'(x(t_0),x(t_f))^\top \lambda = 0.$$

where $h(t, x, p, u) = p^0 f^0(t, x, u) + (p | f(t, x, u))$ is the *pseudo-Hamiltonian*.

Remark

The transversality conditions can be written without λ by

$$c^{\star}(z(t_0),z(t_f)) := B_c(x(t_0),x(t_f))^{\top} \begin{pmatrix} -p(t_0) \\ p(t_f) \end{pmatrix} = 0,$$

where B_c is a matrix where each column is a vector of a basis of Ker $c'(x_0, x_f)$.

An extremal is a pair $z = (x, p) \in AC([t_0, t_f], \mathbb{R}^n) \times AC([t_0, t_f], \mathbb{R}^n)$ such that it exists $u \in L^{\infty}([t_0, t_f], \mathbb{R}^m)$ such that the Hamilton's dynamic and the maximisation condition are satisfied.

A *BC-extremal* is an extremal which satisfy the boundary conditions: the initial and final state constraints given by c, and the initial and final costate constraints, given by c^* .

An extremal is said *normal* if $p^0 < 0$ and *abnormal* if $p^0 = 0$.

Main assumptions

We consider that

- (H1): All the extremals are supposed to be normal and we fix p⁰ = -1 (by homogeneity of (p⁰, p)),
- (H2): The maximized Hamiltonian

$$H(t,z) = \max_{u \in U(t)} h(t,z,u)$$

is C^1 , with z = (x, p) in a neighborhood of a given reference extremal.

Under theses assumptions, the Hamiltonian vector field is defined by

$$\vec{H}(t,z) = \big(\nabla_{p}H(t,z), -\nabla_{x}H(t,z)\big),$$

and we get the following proposition

Proposition 1 ([Agrachev and Sachkov, 2004], Proposition 12.1) z = (x, p) is an extremal of (OCP) if and only if $\dot{z}(t) = \vec{H}(t, z(t))$.

Main idea of the simple shooting method

Figure: Illustration of the simple shooting method, where n = 1 and a fixed initial and final state (x_0, x_f) .

Simple shooting method

The Pontryagin maximum leads to the resolution of the following problem

(TPBVP)
$$\begin{cases} z_f = \exp_{\vec{H}}(t_f, t_0, z_0), \\ g(z_0, z_f) = 0, \end{cases}$$

where the exponential map $\exp_{\vec{H}}(t_f, t_0, z_0)$ of a field \vec{H} is the solution at time t_f of the Cauchy problem

$$\forall t \in [t_0, t_f], \ \dot{z}(t) = \vec{H}(t, z(t)), \ z(t_0) = z_0,$$

and g is the state and costate initial and final constraints, defined by

$$g(z_0, z_f) = \begin{pmatrix} c(x_0, x_f) \\ c^*(z_0, z_f) \end{pmatrix}, \text{ where } \begin{array}{c} z_0 = (x_0, p_0) \\ z_f = (x_f, p_f) \end{array}$$

The simple shooting methods aim to find a zero of the following shooting function

$$\begin{array}{rcl} S_{s} & : & \mathbb{R}^{2n} & \longrightarrow & \mathbb{R}^{2n} \\ & & z_{0} & \longmapsto & g\bigl(z_{0}, \exp_{\vec{H}}(t_{f}, t_{0}, z_{0})\bigr). \end{array}$$

Table of Contents

1) General framework

2 Main goals

- Bilevel optimal control problem
- A novel approach

5 Application

Results

Goals

The application is an industrial problem and the method need to be:

- fast,
- robust,
- computationally efficient.

Figure: Master controller.

Main idea of the multiple shooting method

Figure: Illustration of the simple and the multiple shooting method, where n = 1 and a fixed initial and final state (x_0, x_f) .

Multiple shooting method

The time interval $[t_0, t_f]$ is decomposed into $\Delta_i = [t_i, t_{i+1}], i \in \mathbb{N}_N$, where $t_0 < t_1 < \cdots < t_N < t_{N+1} = t_f$ and $\mathbb{N}_N = \{0, \ldots, N\}$.

(TPBVP) is transformed to

(MPBVP)
$$\begin{cases} \forall i \in \mathbb{N}_{N-1}, \quad z_{i+1} = \exp_{\vec{H}}(t_i, t_{i+1}, z_i), \\ g(z_0, \exp_{\vec{H}}(t_{N+1}, t_N, z_N)) = 0. \end{cases}$$

The corresponding shooting function $S_m \colon \mathbb{R}^{2n(N+1)} \to \mathbb{R}^{2n(N+1)}$ is defined by

$$S_m(z_0,...,z_N) = \begin{pmatrix} \exp_{\vec{H}}(t_1,t_0,z_0) - z_1 \\ \vdots \\ \exp_{\vec{H}}(t_N,t_{N-1},z_{N-1}) - z_N \\ g(z_0,\exp_{\vec{H}}(t_{N+1},t_N,z_N)) \end{pmatrix}$$

 S_m is known to be less sensitive to the initial guess than S_s [Bock and Plitt, 1984].

Comparated to the simple shooting method, the multiple shooting one is

- ✓ faster,
- ✓ more robust,
- \times computationally equivalent.

Goal 1: See the multiple shooting method with a different point of view.

Goal 2: Propose a new optimal control method.

Table of Contents

1 General framework

Main goals

3 Bilevel optimal control problem

A novel approach

5 Application

Main idea of the bilevel formulation

Example: Cycling race.

Figure: Part of the Paris-Roubaix race²

 2 https://bikespot.fr/en/routes/1-paris-roubaix#readElevation

Rémy Dutto	Bi-level optimal	control method	and application
------------	------------------	----------------	-----------------

Main idea of the bilevel formulation

Example: Cycling race.

Figure: Part of the Paris-Roubaix race²

²https://bikespot.fr/en/routes/1-paris-roubaix#readElevation

Rémy Dutto	Bi-level optimal	control method	and application
------------	------------------	----------------	-----------------

For all $i \in \mathbb{N}_N$, the intermediate optimal control problems are defined by

$$(\mathsf{OCP}_{i,a,b}) \qquad \begin{cases} V_i(a,b) \coloneqq \min_{x,u} J_i(x,u) \\ \text{s.t. } \dot{x}(t) = f(t,x(t),u(t)), \quad t \in \Delta_i \text{ a.e.}, \\ u(t) \in \mathsf{U}(t), \quad t \in \Delta_i, \\ x(t_i) = a, \quad x(t_{i+1}) = b, \end{cases}$$

where V_i corresponds to the value function. The cost J_i is defined by

$$J_i(x, u) = \int_{t_i}^{t_{i+1}} f^0(t, x(t), u(t)) dt,$$

and let $S_i(a, b)$ the set of solutions of $(OCP_{i,a,b})$.

Bilevel formulation of (OCP)

(OCP) can be formulate into the equivalent form

(BOCP)
$$\begin{cases} \min_{X} V(X) \coloneqq \sum_{i=0}^{N} V_i(X_i, X_{i+1}) \\ \text{s.t.} \quad X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \end{cases}$$

where \mathcal{X} is the set of admissible intermediate states $X = (X_0, \dots, X_{N+1})$.

Bilevel formulation of (OCP)

(OCP) can be formulate into the equivalent form

(BOCP)
$$\begin{cases} \min_{X} V(X) \coloneqq \sum_{i=0}^{N} V_i(X_i, X_{i+1}) \\ \text{s.t.} \quad X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \end{cases}$$

where \mathcal{X} is the set of admissible intermediate states $X = (X_0, \dots, X_{N+1})$.

Let's remark that for all $i \in \mathbb{N}_N$, for all (a, b) admissible, and for all $(x_i, u_i) \in S_i(a, b)$, we have

$$J_i(x_i,u_i)=V_i(a,b),$$

and so, (BOCP) can be seen as bilevel optimal control problem [Aussel and Svensson, 2020]

$$\begin{cases} \min_{X} \min_{x,u} \sum_{i=0}^{N} J_i(x_i, u_i) \\ \text{s.t.} \quad X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \\ \forall i \in \mathbb{N}_N, \quad (x_i, u_i) \in \mathcal{S}_i(X_i, X_{i+1}) \end{cases}$$

4

Necessary conditions

Assumption

The function V is differentiable at the solution of (BOCP)

Thanks to KKT conditions, if X is solution of (BOCP), there exists $\lambda \in \mathbb{R}^{p}$ such that

(NCBOCP)
$$\begin{cases} \nabla_X L(X,\lambda) = 0, \\ X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \end{cases}$$

where $L: (\mathbb{R}^n)^{N+1} \times \mathbb{R}^p \to \mathbb{R}$ is the Lagrangian associated to (BOCP), defined by $L(X, \lambda) = V(X) - (\lambda \mid c(X_0, X_{N+1})).$

Using the expressions of L and V, we have

$$(\mathsf{NCBOCP}) \Leftrightarrow \begin{cases} \begin{pmatrix} \nabla_a V_0(X_0, X_1) \\ \nabla_b V_N(X_N, X_{N+1}) \end{pmatrix} - c'(X_0, X_{N+1})^\top \lambda = 0, \\ \\ \nabla_b V_{i-1}(X_{i-1}, X_i) + \nabla_a V_i(X_i, X_{i+1}) = 0, \quad \forall i \in \{1, \dots, N\}, \\ \\ c(X_0, X_{N+1}) = 0, \quad X \in \mathcal{X}, \end{cases}$$

Theorem 1

Given (a, b) admissible, we consider a particular case (OCP_{*}) of (OCP) in which $c(x(t_0), x(t_f)) = (x(t_0) - a, x(t_f) - b)$ (initial and final conditions imposed):

$$(\mathsf{OCP}_{*}) \qquad \begin{cases} V_{*}(a,b) \coloneqq \min_{x,u} \int_{t_{0}}^{t_{f}} f^{0}(t,x(t),u(t)) \, dt, \\ \text{s.t. } \dot{x}(t) = f(t,x(t),u(t)) & t \in [t_{0},t_{f}] \text{ a.e.}, \\ u(t) \in U(t), & t \in [t_{0},t_{f}], \\ x(t_{0}) = a, \quad x(t_{f}) = b. \end{cases}$$

The value function $V_*(a, b)$ of (OCP_*) is assumed to be differentiable at (a, b). Then, if (x, u) is a solution of (OCP_*) with (x, p) the associated normal *BC*-extremal, we have:

$$\nabla V_*(x(t_0), x(t_f)) = (-p(t_0), p(t_f)).$$

Idea of proof

We want to prove that

$$\nabla_{a}V_{*}(x(t_{0}), x(t_{f})) = -p(t_{0}), \qquad (1)$$

$$\nabla_b V_* \big(x(t_0), x(t_f) \big) = \rho(t_f). \tag{2}$$

(1) is a classical result [Bokanowski et al., 2021]. To prove (2), we transform (OCP $_*$) into

$$(\mathsf{ROCP}_{*}) \quad \begin{cases} V_{R}(b,a) \coloneqq \min_{\hat{x},\hat{u}} \int_{t_{0}}^{t_{f}} f^{0}(\phi(t),\hat{x}(t),\hat{u}(t)) \, dt, \\ \text{s.t. } \dot{\hat{x}}(t) = -f(\phi(t),\hat{x}(t),\hat{u}(t)), & t \in [t_{0},t_{f}] \text{ a.e.}, \\ \hat{u}(t) \in \mathsf{U}(\phi(t)), & t \in [t_{0},t_{f}], \\ \hat{x}(t_{0}) = b, \quad \hat{x}(t_{f}) = a, \end{cases}$$

where the reverse time transformation $\phi \colon [t_0, t_f] \to [t_0, t_f]$ is defined by

$$\phi(t)=t_f+t_0-t.$$

Idea of proof

Using the classical transformation

$$\theta_R(x, p, u) = (x \circ \phi, -p \circ \phi, u \circ \phi)$$

and denoting $(\hat{x}, \hat{p}, \hat{u}) = \theta_R(x, p, u)$, (OCP_{*}) is equivalent to (ROCP_{*}):

(x, p) is a BC-extremal associated to (x, u) solution of (OCP_*) $\iff (\hat{x}, \hat{p})$ is a BC-extremal associated to (\hat{x}, \hat{u}) solution of $(ROCP_*)$.

Since (ROCP_{*}) has the same form as (OCP_{*}) and the value function V_R is differentiable at (b, a), we can apply (1) to (ROCP_{*}):

$$egin{aligned}
abla_b V_*(x(t_0), x(t_f)) &=
abla_b V_R(\hat{x}(t_0), \hat{x}(t_f)) \ &= -\hat{
ho}(t_0) \ &= -(-p \circ \phi)(t_0) \ &=
ho(t_f). \end{aligned}$$

Necessary conditions

The necessary optimality conditions of (BOCP)

$$(\mathsf{NCBOCP}) \begin{cases} \begin{pmatrix} \nabla_a V_0(X_0, X_1) \\ \nabla_b V_N(X_N, X_{N+1}) \end{pmatrix} - c'(X_0, X_{N+1})^\top \lambda = 0, \\ \\ \nabla_b V_{i-1}(X_{i-1}, X_i) + \nabla_a V_i(X_i, X_{i+1}) = 0, \quad \forall i \in \{1, \dots, N\}, \\ \\ c(X_0, X_{N+1}) = 0, \quad X \in \mathcal{X}, \end{cases}$$

become, by using the Theorem 1

$$(\mathsf{NCBOCP}) \Leftrightarrow \begin{cases} \forall i \in \mathbb{N}_N, \exists z_i = (x_i, p_i) \text{ a BC-extremal associated} \\ \text{to a solution } (x_i, u_i) \text{ of } (\mathsf{OCP}_{i, X_i, X_{i+1}}), \\ \begin{pmatrix} -p_0(t_0) \\ p_N(t_{N+1}) \end{pmatrix} - c'(X_0, X_{N+1})^\top \lambda = 0, \\ \forall i \in \{1, ..., N\}, \ p_{i-1}(t_i) - p_i(t_i) = 0, \\ c(X_0, X_{N+1}) = 0. \end{cases}$$

Replacing (x_i, u_i) solution to $(OCP_{i,X_i,X_{i+1}})$ by the associated necessary conditions of optimality, we get

$$(\mathsf{NCBOCP}) \Rightarrow \begin{cases} \forall i \in \mathbb{N}_{N}, \ \exp_{\overrightarrow{H}} (t_{i+1}, t_{i}, z_{i}(t_{i})) = z_{i}(t_{i+1}), \\ \forall i \in \mathbb{N}_{N}, \ x_{i}(t_{i}) - X_{i} = 0, \\ \forall i \in \mathbb{N}_{N}, \ x_{i}(t_{i+1}) - X_{i+1} = 0, \\ (-p_{0}(t_{0}) \\ p_{N}(t_{N+1}) \end{pmatrix} - c'(X_{0}, X_{N+1})^{\top} \lambda = 0, \\ \forall i \in \{1, ..., N\}, \ p_{i-1}(t_{i}) - p_{i}(t_{i}) = 0, \\ c(X_{0}, X_{N+1}) = 0, \\ \Leftrightarrow (\mathsf{MPBVP}). \end{cases}$$

Figure: Commutative diagram from (OCP) to (MPBVP).

Table of Contents

1 General framework

2 Main goals

- 3 Bilevel optimal control problem
- 4 novel approach

Application

Main idea

Let's assume that the value functions V_i are known a priori. We have to solve an optimization problem

$$\begin{cases} \min_{X} V(X) \coloneqq \sum_{i=0}^{N} V_i(X_i, X_{i+1}) \\ \text{s.t. } X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \end{cases}$$

to get the optimal intermediate states $X^* = ig(X^*_0, \dots, X^*_{N+1}ig)$,

Main idea

Let's assume that the value functions V_i are known a priori. We have to solve an optimization problem

$$\left\{ egin{array}{l} \min_{X} V(X) \coloneqq \sum_{i=0}^{N} V_i\left(X_i, X_{i+1}
ight) \ \mathrm{s.t.} \ X \in \mathcal{X}, \quad c(X_0, X_{N+1}) = 0, \end{array}
ight.$$

to get the optimal intermediate states $X^* = (X_0^*, \dots, X_{N+1}^*)$, and N+1 independent optimal control problems

$$\begin{cases} \min_{x,u} \int_{t_i}^{t_{i+1}} f^0(t, x(t), u(t)) dt \\ \text{s.t. } \dot{x}(t) = f(t, x(t), u(t)), & t \in \Delta_i \text{ a.e.}, \\ u(t) \in U(t), & t \in \Delta_i, \\ x(t_i) = X_i^*, \quad x(t_{i+1}) = X_{i+1}^*, \end{cases}$$

where $(X_i^*, -\nabla_a V_i(X_i^*, X_{i+1}^*))$ is a zero of the associated simple shooting function.

28/44

Proposed approach

The proposed approach is based on an approximation C_i of the value function V_i . We propose to solve an optimization problem

(Macro)
$$\begin{cases} \min_{X} C(X) \coloneqq \sum_{i=0}^{N} C_{i}(X_{i}, X_{i+1}) \\ \text{s.t. } X \in \mathcal{X}, \quad c(X_{0}, X_{N+1}) = 0, \end{cases}$$
to get the "optimal" intermediate states $\hat{X} = (\hat{X}_{0}, \dots, \hat{X}_{N+1}),$

Proposed approach

1

The proposed approach is based on an approximation C_i of the value function V_i . We propose to solve an optimization problem

Ν

(Macro)

$$\begin{cases} \min_{X} \boldsymbol{C}(X) \coloneqq \sum_{i=0} \boldsymbol{C}_{i} \left(X_{i}, X_{i+1} \right) \\ \text{s.t. } X \in \mathcal{X}, \quad \boldsymbol{c}(X_{0}, X_{N+1}) = \boldsymbol{0}, \end{cases}$$

to get the "optimal" intermediate states $\hat{X} = (\hat{X}_0, \dots, \hat{X}_{N+1})$, and N + 1 independent optimal control problems

(Micro)
$$\begin{cases} \min_{x,u} \int_{t_i}^{t_{i+1}} f^0(t, x(t), u(t)) dt \\ \text{s.t. } \dot{x}(t) = f(t, x(t), u(t)), & t \in \Delta_i \text{ a.e.,} \\ u(t) \in U(t), & t \in \Delta_i, \\ x(t_i) = \hat{X}_i, & x(t_{i+1}) = \hat{X}_{i+1}, \end{cases}$$

where $(\hat{X}_i, -\nabla_a C_i(\hat{X}_i, \hat{X}_{i+1}))$ is not necessary a zero of the associated simple shooting function.

The optimal cost is $V(X^*)$, and the (Macro)-(Micro) cost is $V(\hat{X})$. How to control the error of the proposed method $|V(X^*) - V(\hat{X})|$?

Proposition 2

If there exists $\varepsilon \ge 0$ such that for all $i \in N_N$ and for all (a, b) admissible

$$|V_i(a,b) - C_i(a,b)| \leq \frac{\varepsilon}{2(N+1)}$$

then we have

$$|V(X^*) - V(\hat{X})| \le \varepsilon.$$

How to create C_i , the approximation of V_i ?

To approximate V_i , we need to create a database \mathbb{D}_i of optimal transition values

$$\mathbb{D}_i = \Big\{(a,b,c) \ \Big| \ (a,b) \text{ admissible and } V_i(a,b) = c\Big\}.$$

<u>Method 1</u>: for a given set of initial and final admissible state (a, b), compute $V_i(a, b)$, this means solving the optimal control $(OCP_{i,a,b})$.

With the simple shooting method, it leads to the resolution of $S_{i,a,b}(z_0) = 0$, where $S_{i,a,b}$: $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is the associated simple shooting function defined by

$$\mathcal{S}_{i,a,b}(z_0) = \left(egin{array}{c} \pi_x(z_0) - a \ \pi_xig(\exp_{ec{H}}(t_{i+1},t_i,z_0)ig) - b \end{array}
ight),$$

where π_x is the classical state projection $\pi_x(x, p) = x$.

Database of optimal values: method 2

<u>Method 2</u>: For a discretization of initial state and costate $z_0 = (x_0, p_0)$, calculate $z_f = (x_f, p_f) = \exp_{\vec{H}}(t_i, t_{i+1}, z_0)$ and the associated cost *c*. We have ³

$$V_i(x_0, x_f) = c.$$

Advantages: No need to solve $S_{i,a,b}(z_0) = 0$: less computation and faster method.

Disadvantages: No control on the database repartition.

³ under some assumption on $p_0 \mapsto \pi_x(\exp_{\overrightarrow{H}}(t_{i+1}, t_i, (x_0, p_0)))$

Cost transition functions C_i

If the database \mathbb{D}_i is made by method 2, the transition cost C_i can be modeled by a simple smooth neural network.

Figure: Schema of the network.

Architecture: 2 hidden layers (16/8 neurons), tanh and sigmoïd activations.

Table of Contents

1 General framework

2 Main goals

- 3 Bilevel optimal control problem
- 4 A novel approach

5 Application

We consider an Hybrid Electric Vehicle (HEV) on a predefined cycle, i.e. speed and slope trajectories are prescribed.

Figure: Worldwide harmonized Light vehicles Test Cycle (WLTC).

Requested wheels torque $T_{qW}(t)$ and rotation speed $N_W(t)$ are obtained with the information of our vehicle (mass, wheel diameter, aerodynamic coefficient...).

Inputs of our static model:

Figure: Schema of the selected HEV.

Outputs: \dot{m}_{Fuel} and \dot{SOC} , where stands for $\frac{d}{dt}$.

HEV torque split and gear shift problem

The Hybrid Electric Vehicle torque split and gear shift problem can be formulated as the same form as (OCP):

$$(\mathsf{OCP}): \begin{cases} \min_{x,u} \int_{t_0}^{t_f} f^0(t, x(t), u(t)) dt \\ \text{s.t. } \dot{x}(t) = f(t, x(t), u(t)) & t \in [t_0, t_f] \text{ a.e.,} \\ u(t) \in \mathsf{U}(t) & t \in [t_0, t_f], \\ c(x(t_0), x(t_f)) = \begin{pmatrix} x(t_0) - x_0 \\ x(t_f) - x_f \end{pmatrix} = 0, \end{cases}$$

where:

- x = SOC (State Of Charge),
- $u = (T_{qICE}, Gear)$,
- f^0 is the instantaneous fuel consumption function,
- f describes the instantaneous evolution of the state of charge.

The assumptions of (OCP) are satisfied.

Table of Contents

1 General framework

2 Main goals

- 3 Bilevel optimal control problem
- 4 A novel approach

5 Application

Database of optimal values: Comparison

Mean number of iterations to solve the shooting problem⁴: 11.2.

(a) Method 1, 10 points. (b) Method 2, 10 points. (c) Method 2, 112 points.

Figure: Value function data, created with the method 1 with 10 points (a), and with the method 2 with 10 points (b) and 112 points (c), on the first time interval (i = 0), and with a fixed initial state.

⁴ with fixed initialization, on 475 experiments on the first time interval with different initial and final state

(Micro) problems resolution

Thanks to Theorem 1, the couple

$$\left(\hat{X}_i, -\nabla_a C_i(\hat{X}_i, \hat{X}_{i+1})\right)$$

is a natural initial guess to find a zero of the associated shooting function.

Figure: State trajectories of the simple shooting and the bi-level methods.

Associated cost error: 0.34g (0.039%) and 1.71g (0.244%).

Conclusion

We proposed a new method (Macro)-(Micro):

- based on a bilevel decomposition of (OCP),
- strongly linked to the Multiple shooting method ,
- faster than the simple shooting method, due to the parallel computing,
- that need less computation for embedded solution than multiple shooting method,
- with a good initialization of the shooting function,
- with small cost difference.

Perspectives:

- Generalization on multiple cycle: Convolutional Neural Network,
- Generalization of the method with weaker knowledge assumptions.

Bibliography

Agrachev, A. A. and Sachkov, Y. L. (2004). Control Theory from the Geometric Viewpoint. Springer Berlin Heidelberg.

Aussel, D. and Svensson, A. (2020).

A Short State of the Art on Multi-Leader-Follower Games.

In Bilevel Optimization: Advances and Next Challenges, chapter 3, pages 53-76. Springer.

Bock, H. and Plitt, K. (1984).

A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems. *IFAC Proc. Vol.*, 17(2):1603–1608.

Bokanowski, O., Désilles, A., and Zidani, H. (2021).

Relationship between maximum principle and dynamic programming in presence of intermediate and final state constraints.

ESAIM - Control Optim. Calc. Var., 27:91.

Cesari, L. (1983).

Statement of the Necessary Condition for Mayer Problems of Optimal Control.

In Optimization—Theory and Applications: Problems with Ordinary Differential Equations, chapter 4, pages 159–195. Springer New York.

44/44