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Introduction

In collaboration with:
- Olivier Cots, IRIT, Toulouse,
- Olivier Flebus, Vitesco Technologies, Toulouse,
- Sophie Jan, IMT, Toulouse,
- Serge Laporte, IMT, Toulouse,
- Mariano Sans, Vitesco Technologies, Toulouse.
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Cycle

We consider a Hybrid Electric Vehicle (HEV) on a predefined cycle, i.e.
speed and slope trajectories are prescribed.
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Figure: Worldwide harmonized Light vehicles Test Cycle (WLTC).

Requested wheels torque TqW (t) and rotation speed NW (t) are obtained
with the information of our vehicle (mass, wheel diameter, aerodynamic
coefficient. . . ).
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Static model of HEV

Inputs of our static model:

Name Description Unit

Cost
mFuel Fuel consumption g

State
SOC Battery state of charge

Commands
Gear Gearbox selector
TqICE ICE torque N.m

External inputs
TqW Wheels torque N.m
NW Wheels rotation speed RPM

Figure: Schema of the HEV.
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Outputs: ṁFuel and ˙SOC , where ˙ stands for
d
dt

.
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HEV torque split and gear shift problem

The HEV torque split and gear shift problem can be formulated as a
classical Lagrange optimal control problem

(OCP)



V (x0, xT ) = min
x ,u

∫ tf

t0

f 0(t, x(t), u(t)) dt,

s.t. ẋ(t) = f
(
t, x(t), u(t)

)
, t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t), t ∈ [t0, tf ],

x(t0) = x0, x(tf ) = xT ,

where:
• x ∈ AC([t0, tf ],R) corresponds to the SOC ,
• u ∈ L∞([t0, tf ],R2) corresponds to the pair

(
TqICE ,Gear

)
,

• functions f 0 and f are C1 w.r.t. x and u,
• U(t) ⊂ R2 is a nonempty closed set for every t ∈ [t0, tf ], with

regularity assumptions.1
1(cf. [Cesari, 1983, Chapter 4.2, Remark 5] for more information)
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Assumptions from previous work

Motivated by [Cots et al., 2023a],
• we only consider the first 100s of the cycle ([t0, tf ] = [0, 100]),
• we have constructed a database D of the value function V evaluations

by an efficient method2,
• we have trained a neural network C on D to approximate V .

Figure: The points correspond
to D and the surface to the
trained neural network C .

2cf. [Cots et al., 2023b] for more information
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Augmented system

We propose to consider the augmented formulation of (OCP)

(AOCP)


min
x̂ ,u

x0(tf )

s.t. ˙̂x(t) = f̂
(
t, x̂(t), u(t)

)
t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t) t ∈ [t0, tf ],

x̂(t0) = x̂0, x(tf ) = xf ,

where f̂ : R× R2 × R2 → R2 is the augmented system

f̂ (t, x̂ , u) =
(
f 0(t, x , u), f (t, x , u)

)
and where x̂ = (x0, x) corresponds to the cost-state pair, with x̂0 = (0, x0).
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Pontryagin’s Maximum Principle

If (x̂ , u) is solution of (AOCP), there exists a non trivial augmented costate
p̂ = (p0, p) ∈ AC([t0, tf ],R2) ̸= 0 with p0 ≤ 0 such that the Hamilton’s
dynamic is satisfied for almost every t ∈ [t0, tf ]{

˙̂x(t) = ∇p̂h
(
t, x̂(t), p̂(t), u(t)

)
,

˙̂p(t) = −∇x̂h
(
t, x̂(t), p̂(t), u(t)

)
,

(1)

as well as the maximization condition for almost every t ∈ [t0, tf ]

h
(
t, x̂(t), p̂(t), u(t)

)
= max

w∈U(t)
h
(
t, x̂(t), p̂(t),w

)
, (2)

where h(t, x̂ , p̂, u) =
(
p̂
∣∣ f̂ (t, x̂ , u)) is the pseudo-Hamiltonian of the

augmented system.
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Notations

For the following presentation, we denote

x̂ = (x0, x) and p̂ = (p0, p).

Moreover, we denote

ẑ = (x̂ , p̂) and z = (x , p).

These notations can be used for absolutely continuous functions or for
vectors.

Remark

Since f̂ does not depend on the cost x0, we obtain ṗ0(·) = 0 and thus
p0(·) is constant.
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Definitions - Extremals

An extremal is a couple (ẑ , u) ∈ AC([t0, tf ],R4)× L∞([t0, tf ],R2) which
satisfies the Hamilton’s dynamic (1) and the maximization condition (2).

A BC-extremal is an extremal which satisfies the boundary conditions given
by x̂(t0) = x̂0 and x(tf ) = xT .

An extremal is said normal− if p0 < 0, normal+ if p0 > 0 and abnormal if
p0 = 0.
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Framework

Let us denote exp #»
h (ẑ0) a solution at time tf of

˙̂z(t) =
#»

h
(
t, ẑ(t), u(t)

)
, t ∈ [t0, tf ] a.e.

h (t, ẑ(t), u(t)) = max
w∈U(t)

h (t, ẑ(t),w) , t ∈ [t0, tf ] a.e.

ẑ(t0) = ẑ0,

where
#»

h is the pseudo-Hamiltonian vector field of the augmented system,
defined by

#»

h (t, x̂ , p̂, u) =
(
∇x̂h(t, x̂ , p̂, u),−∇p̂h(t, x̂ , p̂, u)

)
.

Hypothesis 1
The possibly multivalued function exp #»

h (x̂0, p̂0) is an application, defined
for all x̂0 ∈ R2 and for all non trivial p̂0 ∈ R2.
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Simple shooting method

Under the previous hypothesis, the maximum principle leads to the
resolution of

(TPBVP)

{
πx

(
exp #»

h (ẑ0)
)
= xT ,

πx̂(ẑ0) = x̂0, πp0(ẑ0) ≤ 0,

where πx(·) is the classical x-space projection.

The simple shooting method aims to find a non-trivial zero p̂0 = (p0, p0) of
the shooting function

S : R− × R −→ R
p̂0 7−→ πx

(
exp #»

h (x̂0, p̂0)
)
− xT
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Normalization of the shooting function

Let us remark that if p̂0 ̸= 0 satisfies S(p̂0) = 0 then for all k > 0,
S(kp̂0) = 0 (due to homogeneity of BC-extremals on p̂).

We propose two normalizations of the shooting function S .
• Method 1: if we assume that the extremals associated to a solution

are normal− (p0 < 0), then we can fix p0 = −1 and consider
S1 : R→ R defined by

S1(p0) = S(−1, p0),

• Method 2: without the above assumption, we can fix ∥p̂0∥2 = 1 and
consider S2 : [−1, 1]→ R defined by

S2(p0) = S
(
η(p0), p0

)
, where η(p0) = −

√
1− p2

0 .
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Results

A solution of the shooting method
is found by a Newton-like solver.

Thanks to [Cots et al., 2023a], a
natural initial guess for S1 is given
by

p∗ = −∇x0C (x0, xf ).

✖

■

Figure: Evolution of the error |S1(·)− xf | w.r.t the number of iterations (with 100
different initial and final states).

: fixed initialization p = 500 (■) : natural initialization p∗ (✖)
: industrial tolerance 10−3

Rémy Dutto Geometric preconditioner for indirect method and application to HEV 2024 15/28



Goal

Goal: Reducing the number of iterations of the solver

Main idea3: Preconditioning method of the shooting function based on
• a geometric interpretation of the costate
• and the Mathieu transformation.

3cf. [Cots et al., 2024] for more information
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Geometric interpretation of the costate

The proof of the maximum principle is constructive.

The final augmented
costate p̂f =

(
p0, p(tf )

)
is taken in the polar of the proper convex

Boltyanskii cone K◦.

A

x0f

xf

Figure: Illustration of the accessible augmented state set A, which is the
set of reachable augmented states x̂f = (x0

f , xf ) at tf from x̂0 at t0.

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)

.
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)
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A

K
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x0f
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Figure: Illustration of the Botlyanskii cone K and its polar K◦ at an
augmented final state x̂f ∈ ∂A.

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)

.
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The proof of the maximum principle is constructive. The final augmented
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)
is taken in the polar of the proper convex

Boltyanskii cone K◦.

A

T (A, x̂f )

K
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N(A, x̂f )x0f
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Figure: Illustration of the link between K◦ and the normal cone N
(
A, x̂f

)
of the set A at the point x̂f .

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)
.
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Accessible augmented set and shooting functions
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Figure: With x0 = 0.5.
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Mathieu transformation

A diffeomorphism ϕ : R2 → R2 on the augmented state is lifted into a
diffeomorphism Φ: R2 × R2 → R2 × R2 on the augmented state-costate
that preserves the Hamiltonian dynamics

Φ(x̂ , p̂) =
(
ϕ(x̂), Jϕ(x̂)

−⊤p̂
)
,

which is called Mathieu transformation.

This diffeomorphism transforms ẑ = (x̂ , p̂) into ŵ = (ŷ , q̂):

ẑ =

(
x̂
p̂

)
Φ−−−−→←−−−−

Φ−1

(
ŷ
q̂

)
= ŵ .

Moreover, we denote ŷ = (y0, y) and q̂ = (q0, q).
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Construction of the transformation

Main idea: fitting an ellipse on ∂A and creating the linear
diffeomorphism ϕ(x̂) = Ax̂ + b that transforms this ellipse into the unit
circle.

Figure: Original coordinates Figure: New coordinates
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Geometric interpretation of the costate
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Figure: With x0 = 0.5.
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Definition of the shooting functions

In the new coordinates, the shooting function T : R− × R→ R is given by

T (q̂0) = πy
(
ŷf (q̂0)

)
− yT

where πy is the classical y -space projection, and the function ŷf (·) is
constructed by

(p0, p0) = p̂0 q̂0 = (q0, q0)

(x0
f , xf ) = x̂f ŷf = (y0

f , yf )

p̂0 = Jϕ(x̂0)
⊤q̂0

p̂0 = A⊤q̂0

x̂f = πx̂

(
exp #»

h (x̂0, p̂0)
)

ϕ(x̂f ) = ŷf

Axf + b = ŷf

The functions T1 and T2 are defined from T similarly as S1 and S2 from S .
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Results

Figure: Evolution of the error w.r.t
the number of iterations
(with 100 different initial and final
states).

Error

Init Fixed4 Natural

■ ✖∣∣S1(·)
∣∣

✖

■

4p = 500 for S1
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Results

Figure: Evolution of the error w.r.t
the number of iterations
(with 100 different initial and final
states).

Error

Init Fixed4 Natural

■ ✖∣∣S1(·)
∣∣

for T2

✖

■

The error for T2 is converted into the original coordinates.
4p = 500 for S1 and q = 0 for T2.
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Conclusion

We propose a new geometric preconditioner of the shooting function :
• based on a geometric interpretation of the costate and on the Mathieu

transformation,
• which only needs 2 iterations in average of the solver to find a zero in

our application,
• which is non-intrusive with respect to the model,
• no additional computational cost (since we have D and C ).
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Main property on the transformation

If ϕ : R2 → R2 is a diffeomorphism then
min

x̂=(x0,x)
x0,

s.t. x̂ ∈ A,
x = xT ,

⇐⇒


min

ŷ=(y0,y)
πx0

(
ϕ−1(ŷ)

)
,

s.t. ŷ ∈ ϕ
(
A
)
,

πx
(
ϕ−1(ŷ)

)
= xT ,

where πx0 is the x0-space projection. Moreover, if ϕ satisfy

∂ϕ

∂x0 =

(
k
0

)
, k > 0, (3)

then ϕ(x̂) =
(
ϕ0(x̂), ϕx(x)

)
and

min
x̂=(x0,x)

x0,

s.t. x̂ ∈ A,
x = xf ,

⇐⇒


min

ŷ=(y0,y)
y0,

s.t. ŷ ∈ ϕ
(
A
)
,

y = yT ,

where yT = ϕx(xT ).
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Results

Figure: Evolution of the error

Black: |S1(·)|
Red: for T2(·)

w.r.t. the number of iterations
(with 100 different final states).

/ : fixed init (■)
( p = 500 / q = 0)

/ : natural init (✖)

: q = yT

✖

■

The error for T2 is calculated for each iterate on the initial coordinates.
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Definition in the general case

In a general case, the function ŷf (·) is constructed by

p̂0

p̂f q̂f

x̂f ŷf

p̂f = Jϕ(x̂f )
⊤q̂f

p̂0 =
φ̂0(p̂f )

πx̂
(
exp #»

ĥ (x̂0, p̂0)
)

ϕ(x̂f ) = ŷf

where the function φ̂0 is an approximation of the map p̂f 7→ p̂0. In our
case, this approximation is the identity:
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