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Cycle

We consider a Hybrid Electric Vehicle (HEV) on a predefined cycle, i.e.
speed and slope trajectories are prescribed.
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Figure: Worldwide harmonized Light vehicles Test Cycle (WLTC).

Requested wheels torque TqW (t) and rotation speed NW (t) are obtained
with the information of our vehicle (mass, wheel diameter, aerodynamic
coefficient. . . ).
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Static model of HEV

Inputs of our static model:

Name Description Unit

Cost
mFuel Fuel consumption g

State
SOC Battery state of charge

Commands
Gear Gearbox selector
TqICE ICE torque N.m

External inputs
TqW Wheels torque N.m
NW Wheels rotation speed RPM

Figure: Schema of the HEV.
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HEV torque split and gear shift problem

The HEV torque split and gear shift problem can be formulated as a
classical Lagrange optimal control problem

(OCP)





min
x ,u

∫ tf

t0

f 0(t, x(t), u(t)
)
dt,

s.t. ẋ(t) = f
(
t, x(t), u(t)

)
, t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t), t ∈ [t0, tf ],

x(t0) = x0, x(tf ) = xT ,

where:
• x ∈ AC([t0, tf ],R) corresponds to the SOC ,
• u ∈ L∞([t0, tf ],R2) corresponds to the pair

(
TqICE ,Gear

)
,

• functions f 0 and f are C1 w.r.t. x and u,
• U(t) ⊂ R2 is a nonempty closed set for every t ∈ [t0, tf ], with

regularity assumptions.1
1(cf. [Cesari, 1983, Chapter 4.2, Remark 5] for more information)
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Pontryagin’s Maximum Principle

If (x , u) is solution of (OCP), there exists a costate p ∈ AC([t0, tf ],R) and
p0 ≤ 0 such that (p0, p) ̸= 0, the Hamilton’s dynamic is satisfied for
almost every t ∈ [t0, tf ]:

{
ẋ(t) = ∇ph

(
t, x(t), p(t), p0, u(t)

)
,

ṗ(t) = −∇xh
(
t, x(t), p(t), p0, u(t)

)
,

(1)

and the maximization condition is satisfied for almost every t ∈ [t0, tf ]:

h
(
t, x(t), p(t), p0, u(t)

)
= max

w∈U(t)
h
(
t, x(t), p(t), p0,w

)
, (2)

where h is the pseudo-Hamiltonian defined by

h(t, x , p, p0, u) = p0 f 0(t, x , u) + p f (t, x , u).
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Definitions - Extremals

An extremal is a quadruplet

(x , p, p0, u) ∈ AC([t0, tf ],R)×AC([t0, tf ],R)× R× L∞([t0, tf ],R2)

which satisfies the Hamilton’s dynamic (1) and the maximization
condition (2).

A BC-extremal is an extremal which satisfies the boundary conditions given
by x(t0) = x0 and x(tf ) = xT .

An extremal is said normal− if p0 < 0, normal+ if p0 > 0 and abnormal if
p0 = 0.
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Framework

Let us denote exp #»
h (t2, t1, z1, p

0) a solution at time t2 of




ż(t) =
#»

h
(
t, z(t), p0, u(t)

)
, t ∈ [t1, t2] a.e.

h
(
t, z(t), p0, u(t)

)
= max

w∈U(t)
h
(
t, z(t), p0,w

)
, t ∈ [t1, t2] a.e.

z(t1) = z1,

where the pseudo-Hamiltonian vector field
#»

h is defined by
#»

h (t, x , p, p0, u) =
(
∇xh(t, x , p, p

0, u),−∇ph(t, x , p, p
0, u)

)
.

We consider the following hypothesis

Hypothesis 1
The possibly multivalued function exp #»

h (t2, t1, x , p, p
0) is an application,

defined for all t0 ≤ t1 < t2 ≤ tf , for all x ∈ R and for all non trivial
(p0, p) ∈ R2.
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Simple shooting method

Under the previous hypothesis, the maximum principle leads to the
resolution of

(TPBVP)

{
πx

(
exp #»

h (tf , t0, z0, p
0)
)
= xT ,

πx(z0) = x0, p0 ≤ 0,

where πx(·) is the classical x-space projection.

The simple shooting method aims to find a non-trivial zero (p0, p) of the
shooting function

S : R− × R −→ R(
p0, p

)
7−→ πx

(
exp #»

h (tf , t0, x0, p, p
0)
)
− xT
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Normalization of the shooting function

Let us remark that if (p0, p) ̸= 0 satisfies S(p0, p) = 0 then for all k > 0,
S(kp0, kp) = 0 (due to homogeneity of BC-extremals on (p0, p)).

We propose two normalizations of the shooting function S .
• Method 1: if we assume that the extremals associated to a solution

are normal− (p0 < 0), then we can fix p0 = −1 and consider
S1 : R→ R defined by

S1(p) = S(−1, p),

• Method 2: without the above assumption, we can fix ∥
(
p0, p

)
∥2 = 1

and consider S2 : [−1, 1]→ R defined by

S2(p) = S
(
η(p), p

)
, where η(p) = −

√
1− p2.
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Goals

The application is an industrial problem and the method needs to be:
• fast,
• robust,
• computationally efficient.

Figure: Master controller.
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Multiple shooting method

The time interval [t0, tf ] is decomposed into ∆i = [ti , ti+1], i ∈ NN , where
t0 < t1 < · · · < tN < tN+1 = tf and NN = {0, . . . ,N}.

Problem (TPBVP) is transformed into

(MPBVP)

{
∀i ∈ NN−1, zi+1 = exp #»

h (ti , ti+1, zi , p
0), p0 ≤ 0,

πx(z0) = x0, πx
(
exp #»

h (tN+1, tN , zN , p
0) = xT .

The multiple shooting function is defined by

(
p0, z1, . . . , zN , p

0) 7−→




exp #»
h

(
t1, t0, x0, p0, p

0)− z1
exp #»

h

(
t2, t1, z1, p

0)− z2
...

exp #»
h

(
tN , tN−1, zN−1, p

0)− zN
πx

(
exp #»

h

(
tN+1, tN , zN , p

0) )− xT




.

This function is known to be less sensitive to the initial guess than the
function S [Bock and Plitt, 1984].
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Goals

Simple and multiple shooting are both optimal methods.

Nevertheless, compared to simple shooting, multiple shooting is
• faster,
• more robust,
• computationally equivalent.

Goal : propose a method which also reduces the number of computation.

Main idea2: the Macro-Micro method based on a bilevel decomposition of
Problem (OCP).

2cf. [Cots et al., 2023a] for more information
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Bilevel decomposition

Defining for all i ∈ NN the intermediate optimal control problems

(OCPi ,a,b)





Vi (a, b) := min
x ,u

∫ ti+1

ti

f 0(t, x(t), u(t)
)
dt,

s.t. ẋ(t) = f
(
t, x(t), u(t)

)
, t ∈ ∆i a.e.,

u(t) ∈ U(t), t ∈ ∆i ,

x(ti ) = a, x(ti+1) = b,

where Vi corresponds to the value function, Problem (OCP) can be
formulated into the equivalent form

(BOCP)





min
X

V (X ) :=
N∑

i=0

Vi (Xi ,Xi+1),

s.t. X ∈ X , X0 = x0, XN+1 = xT ,

where X is the set of admissible intermediate states X =
(
X0, . . . ,XN+1

)
.
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Commutative diagram

Under Hypothesis 1 and if
• the BC-extremals associated to (OCP) are normal− (p0 < 0),
• the function V is differentiable at a solution of (BOCP),

then the following diagram is commutative

OCP

BOCP

TPBVP MPBVP

NCBOCP

Dualization

Dualization

Splitting

Decomposition

Figure: Diagram from (OCP) to (MPBVP).
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Idea of proof

To prove this commutation, we mainly need the following result:

Under the previous assumption, if (xi , ui ) is a solution of (OCPi ,a,b),
with (xi , pi ,−1, ui ) an associated BC-extremal, then we have

∇aVi

(
xi (ti ), xi (ti+1)

)
= −pi (ti ), (3)

∇bVi

(
xi (ti ), xi (ti+1)

)
= pi (ti+1).
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Main idea of the Macro-Micro method

Let us assume that the value functions Vi are known a priori.
We have to solve
• first the optimization problem





min
X

V (X ) :=
N∑

i=0

Vi (Xi ,Xi+1) ,

s.t. X ∈ X , X0 = x0, XN+1 = xT ,

to get the optimal intermediate states X ∗ =
(
X ∗

0 , . . . ,X
∗
N+1

)
,

• and then the N + 1 independent optimal control problems




min
x ,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ ∆i a.e.,
u(t) ∈ U(t), t ∈ ∆i ,

x(ti ) = X ∗
i , x(ti+1) = X ∗

i+1,

where p∗ = −∇aVi (X
∗
i ,X

∗
i+1) is a zero of S1, thanks to (3).

Rémy Dutto On on-board indirect method for HEV torque split problem 2024 18/36



Main idea of the Macro-Micro method

Let us assume that the value functions Vi are known a priori.
We have to solve
• first the optimization problem





min
X

V (X ) :=
N∑

i=0

Vi (Xi ,Xi+1) ,

s.t. X ∈ X , X0 = x0, XN+1 = xT ,

to get the optimal intermediate states X ∗ =
(
X ∗

0 , . . . ,X
∗
N+1

)
,

• and then the N + 1 independent optimal control problems




min
x ,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt,
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Proposed approach

The proposed approach is based on an approximation Ci of the value
function Vi . We have to solve
• first the optimization problem

(Macro)





min
X

C (X ) :=
N∑

i=0

Ci (Xi ,Xi+1) ,

s.t. X ∈ X , X0 = x0, XN+1 = xT ,

to get the “optimal” intermediate states X̂ =
(
X̂0, . . . , X̂N+1

)
,

• and the N + 1 independent optimal control problems

(Micro)





min
x ,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ ∆i a.e.,
u(t) ∈ U(t), t ∈ ∆i ,

x(ti ) = X̂i , x(ti+1) = X̂i+1,

where p∗ = −∇aCi (X̂i , X̂i+1) is not necessary a zero of S1.

Rémy Dutto On on-board indirect method for HEV torque split problem 2024 19/36



Proposed approach

The proposed approach is based on an approximation Ci of the value
function Vi . We have to solve
• first the optimization problem

(Macro)





min
X

C (X ) :=
N∑

i=0

Ci (Xi ,Xi+1) ,

s.t. X ∈ X , X0 = x0, XN+1 = xT ,

to get the “optimal” intermediate states X̂ =
(
X̂0, . . . , X̂N+1

)
,

• and the N + 1 independent optimal control problems

(Micro)





min
x ,u

∫ ti+1

ti

f 0 (t, x(t), u(t)) dt,
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Schema of the Macro-Micro method

Macro

Micro

OCP0,X0,X1
OCPi,Xi,Xi+1

OCPN,XN ,XN+1
. . . . . .

Xi Xi+1X0 X1 XN XN+1

(
x, u

)

on ∆0

(
x, u

)

on ∆i

(
x, u

)

on ∆N

. . . . . .

Value function
approximation

{
Ci

}
i∈NN

on-line:

off-line:

Figure: Schema of the Macro-Micro method.
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Construction of the approximation of the value function

For all i ∈ NN , a database Di of value function evaluations is constructed
by an efficient method3 only based on the computation of exp #»

h instead of
the evaluation of Vi .
The functions Ci are modeled by neural networks.

Figure: The points correspond to D0 and the surface to the neural network C0.

3cf. [Cots et al., 2023b] for more information
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Results
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Figure: State trajectories of Macro-Micro and simple shooting methods.

Associated cost differences: 0.34g (0.039%) and 1.71g (0.244%).
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Advantages for an embedded solution

The Macro-Micro method:
• is N+1 times faster than the

simple shooting,
• needs N + 1 times less

computation than indirect
methods,
• have small cost difference,
• is more robust with the natu-

ral initialization given by (3),
see right side figure.

✖

■

Figure: Evolution of the error |S1(·)| w.r.t the number of iterations of a
Newton-like solver (with 100 different initial and final states, on ∆0).

: fixed initialization p = 500 (■) : natural initialization p∗ (✖)
: industrial tolerance 10−3
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Goal of the geometric preconditioner

Goal: further reducing the number of iterations of the solver.

Main idea4: preconditioning method of the shooting function based on
• a geometric interpretation of the costate,
• and the Mathieu transformation.

4cf. [Cots et al., 2024] for more information
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Geometric interpretation of the costate

The proof of the maximum principle is constructive.

The final augmented
costate p̂f =

(
p0, p(tf )

)
is taken in the polar of the proper convex

Boltyanskii cone K◦.

A

x0f

xf

Figure: Illustration of the accessible augmented state set A, which is the
set of reachable augmented states x̂f = (x0

f , xf ) at tf from x0 at t0.

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)

.
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(
p0, p(tf )

)
is taken in the polar of the proper convex

Boltyanskii cone K◦.

A

K

K◦

x0f

xf

Figure: Illustration of the Botlyanskii cone K and its polar K◦ at an
augmented final state x̂f ∈ ∂A.

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)

.
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Geometric interpretation of the costate

The proof of the maximum principle is constructive. The final augmented
costate p̂f =

(
p0, p(tf )

)
is taken in the polar of the proper convex

Boltyanskii cone K◦.

A

T (A, x̂f )

K

K◦

N(A, x̂f )x0f

xf

Figure: Illustration of the link between K◦ and the normal cone N
(
A, x̂f

)

of the set A at the point x̂f .

If A is closed and convex, we can take p̂(tf ) ∈ N
(
A, x̂f

)
.
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Accessible augmented set and shooting functions
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Figure: On ∆0, with x0 = 0.5.
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Mathieu transformation

A diffeomorphism ϕ : R2 → R2 on the augmented state is lifted into a
diffeomorphism Φ: R2 × R2 → R2 × R2 on the augmented state-costate
that preserves the Hamiltonian dynamics

Φ(x̂ , p̂) =
(
ϕ(x̂), Jϕ(x̂)

−⊤p̂
)
,

which is called Mathieu transformation.

This diffeomorphism transforms ẑ = (x̂ , p̂) into ŵ = (ŷ , q̂):

ẑ =

(
x̂
p̂

)
Φ−−−−→←−−−−

Φ−1

(
ŷ
q̂

)
= ŵ .

Moreover, we denote ŷ = (y0, y) and q̂ = (q0, q).
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Construction of the transformation

Main idea: fitting an ellipse on ∂A and creating the linear
diffeomorphism ϕ(x̂) = Ax̂ + b that transforms this ellipse into the unit
circle.

Figure: Original coordinates Figure: New coordinates
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Geometric interpretation of the costate
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Figure: On ∆0, with x0 = 0.5.
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Definition of the shooting functions

In the new coordinates, the shooting function T : R− × R→ R is given by

T (q0, q) = πy
(
ŷf (q

0, q)
)
− yT

where πy is the classical y -space projection, and the function ŷf (·) is
constructed by

(p0, p0) = p̂0 q̂0 = (q0, q0)

(x0
f , xf ) = x̂f ŷf = (y0

f , yf )

p̂0 = Jϕ(x̂0)
⊤q̂0

p̂0 = A⊤q̂0

x̂f = πx̂

(
exp #»

ĥ
(·)

)
ϕ(x̂f ) = ŷf

Axf + b = ŷf

The functions T1 and T2 are defined from T similarly as S1 and S2 from S .
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Results

Figure: Evolution of the error w.r.t
the number of iterations
(with 100 different initial and final
states, on ∆0).

Error

Init Fixed5 Natural

■ ✖∣∣S1(·)
∣∣

✖

■

5p = 500 for S1
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Results

Figure: Evolution of the error w.r.t
the number of iterations
(with 100 different initial and final
states, on ∆0).

Error

Init Fixed5 Natural

■ ✖∣∣S1(·)
∣∣

for T2

✖

■

The error for T2 is converted into the original coordinates.
5p = 500 for S1 and q = 0 for T2.
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Conclusion

Compared to classical indirect method, for an embedded solution, we
proposed two methods.

• Macro-Micro:
• N + 1 times faster,
• needs N + 1 less computations,
• small cost difference (<2g / <0.25%),
• more robust with the natural initialization,

compared to classical indirect method;

• Geometric preconditioner:
• only 2 iterations of the solver in average,
• no additional computational cost,
• non-intrusive with respect to the model.
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Main property on the transformation

If ϕ : R2 → R2 is a diffeomorphism then




min
x̂=(x0,x)

x0,

s.t. x̂ ∈ A,
x = xT ,

⇐⇒





min
ŷ=(y0,y)

πx0
(
ϕ−1(ŷ)

)
,

s.t. ŷ ∈ ϕ
(
A
)
,

πx
(
ϕ−1(ŷ)

)
= xT ,

where πx0 is the x0-space projection. Moreover, if ϕ satisfy

∂ϕ

∂x0 =

(
k
0

)
, k > 0, (4)

then ϕ(x̂) =
(
ϕ0(x̂), ϕx(x)

)
and





min
x̂=(x0,x)

x0,

s.t. x̂ ∈ A,
x = xf ,

⇐⇒





min
ŷ=(y0,y)

y0,

s.t. ŷ ∈ ϕ
(
A
)
,

y = yT ,

where yT = ϕx(xT ).
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Results

Figure: Evolution of the error

Black: |S1(·)|
Red: for T2(·)

w.r.t. the number of iterations
(with 100 different final states).

/ : fixed init (■)
( p = 500 / q = 0)

/ : natural init (✖)

: q = yf

✖

■

The error for T2 is calculated for each iterate on the initial coordinates.
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Definition in the general case

In a general case, the function ŷf (·) is constructed by

p̂0

p̂f q̂f

x̂f ŷf

p̂f = Jϕ(x̂f )
⊤q̂f

p̂0 =
φ̂0(p̂f )

πx̂
(
exp #»

ĥ (.)
)

ϕ(x̂f ) = ŷf

where the function φ̂0 is an approximation of the map p̂f 7→ p̂0. In our
case, this approximation is the identity:
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