App	lication
000	000

Automatic generation of optimal synthesis for membrane filtration systems

Rémy Dutto ^{1,2} Jérôme Harmand ¹ Alain Rapaport ²

¹LBE INRAE, Narbonne

²MISTEA INRAE, Montpellier

Journées statistiques et optimisation, Perpignan

Application	Objectives	Indirect resolution	Conclusion
000000	o	00000000	

Introduction

We are interested in :

- membrane filtration systems
- optimal synthesis
- automatic generation

Application 000000 Objective

Indirect resolution

Conclusion

Table of Contents

1 Application

2 Objectives

3 Indirect resolution

4 Conclusion

Membrane filtration systems

Figure: Extracted from [Vroman et al., 2021]

State/cost :

- m : mass of cake layer
- v : produced volume u = -1 : backwash
- e : energy spend

Control :

- u = 1 : filtration

Dynamics modeling

The dynamics for filtration and backwash mode are assumed to be given respectively by

- $m_f(m)$ and $m_b(m)$ for \dot{m} (speed of variation of m),
- $v_f(m)$ and $v_b(m)$ for \dot{v} (effective flow rate),
- $e_f(m)$ and $e_b(m)$ for \dot{e} (instantaneous energy consumption).

Considering $u \in [-1,1]$, the dynamics are modelled by

$$\begin{cases} \dot{m} = \frac{1+u}{2}m_f(m) + \frac{1-u}{2}m_b(m), \\ \dot{v} = \frac{1+u}{2}v_f(m) + \frac{1-u}{2}v_b(m), \\ \dot{e} = \frac{1+u}{2}e_f(m) + \frac{1-u}{2}e_b(m). \end{cases}$$

Objective

Indirect resolution

Conclusion

Dynamics modeling

Denoting

$$\begin{split} m_+(m) &= \frac{1}{2} \big(m_f(m) - m_b(m) \big), \qquad m_-(m) = \frac{1}{2} \big(m_f(m) + m_b(m) \big), \\ v_+(m) &= \frac{1}{2} \big(v_f(m) - v_b(m) \big), \qquad v_-(m) &= \frac{1}{2} \big(v_f(m) + v_b(m) \big), \\ e_+(m) &= \frac{1}{2} \big(e_f(m) - e_b(m) \big), \qquad e_-(m) &= \frac{1}{2} \big(e_f(m) + e_b(m) \big), \end{split}$$

the dynamic of the system is

$$\begin{cases} \dot{m} = u \, m_+(m) + m_-(m) \\ \dot{v} = u \, v_+(m) + v_-(m) \\ \dot{e} = u \, e_+(m) + e_-(m) \end{cases}$$

Objectiv

Indirect resolution

Case #1 : Maximum volume

The goal is to maximise the filtered volume on a fixed time interval $[t_0, T]$:

$$(\#1) \qquad \begin{cases} \max_{m,u} \int_{t_0}^{T} u(t) v_+(m(t)) + v_-(m(t)) dt, \\ \text{s.c. } \dot{m}(t) = u(t) m_+(m(t)) + m_-(m(t)), \\ u(t) \in [-1,1], \quad t \in [t_0,T], \\ m(t_0) = m_0 \ge 0. \end{cases}$$

Objectives

Indirect resolution

Case #2 : Minimum energy

The goal is to minimise the energy to provide a desired volume of filtered water v_f :

 $(#2) \begin{cases} \min_{m,v,u,t_f} \int_{t_0}^{t_f} u(t) e_+(m(t)) + e_-(m(t)) dt, \\ \text{s.c. } \dot{m}(t) = u(t) m_+(m(t)) + m_-(m(t)), \\ \dot{v}(t) = u(t) v_+(m(t)) + v_-(m(t)), \\ u(t) \in [-1,1], \quad t \in [t_0, t_f], \\ m(t_0) = m_0, \quad v(t_0) = 0, \quad v(t_f) = v_f. \end{cases}$

Equivalent formulation

Let us consider the following general formulation

$$(\text{OCP}) \begin{cases} \min_{x,u,t_f} \int_{t_0}^{t_f} u(t) f_+^0(x_1(t)) + f_-^0(x_1(t)) \, \mathrm{d}t, \\ \text{s.c. } \dot{x}_1(t) = u(t) f_+^1(x_1(t)) + f_-^1(x_1(t)), \\ \dot{x}_2(t) = u(t) f_+^2(x_1(t)) + f_-^2(x_1(t)), \\ u(t) \in [-1,1], \quad t \in [t_0, t_f], \\ x_1(t_0) = x_0, \quad x_2(t_0) = 0, \quad x_2(t_f) = x_f, \end{cases}$$

where $x = (x_1, x_2)$.

Equivalent formulation

Problem (#2) can be written as (OCP)

(OCP)
$$\begin{cases} \min_{x,u,t_f} \int_{t_0}^{t_f} u(t) e_+(x_1(t)) + e_-(x_1(t)) dt, \\ \text{s.c. } \dot{x}_1(t) = u(t) m_+(x_1(t)) + m_-(x_1(t)), \\ \dot{x}_2(t) = u(t) v_+(x_1(t)) + v_-(x_1(t)), \\ u(t) \in [-1, 1], \quad t \in [t_0, t_f], \\ x_1(t_0) = m_0, \quad x_2(t_0) = 0, \quad x_2(t_f) = v_f, \end{cases}$$

where $x = (x_1, x_2)$.

Equivalent formulation

Problem (#1) can be written as (OCP)

(OCP)
$$\begin{cases} \min_{x,u,t_f} - \int_{t_0}^{t_f} u(t) v_+(x_1(t)) + v_-(x_1(t)) dt, \\ \text{s.c. } \dot{x_1}(t) = u(t) m_+(x_1(t)) + m_-(x_1(t)), \\ \dot{x_2}(t) = u(t) 0 + 1, \\ u(t) \in [-1, 1], \quad t \in [t_0, t_f], \\ x_1(t_0) = m_0, \quad x_2(t_0) = 0, \quad x_2(t_f) = T, \end{cases}$$

where $x = (x_1, x_2)$.

Application 000000	Objectives •	Indirect resolution 00000000	Conclusion
Objectives			

Provide optimal synthesis of (OCP) "whatever" inputs functions and initial/final conditions are.

Figure: Example of optimal synthesis with trajectories

App	licat	ion
000	000	

Objectiv

Indirect resolution

Conclusion

Pontryagin maximum principle

If (x, u, t_f) is a solution of (OCP), there exists a costate $p = (p_1, p_2)$ such that $p_1(t_f) = 0$, the *costate dynamic* is satisfied for almost every $t \in [t_0, t_f]$

$$\dot{\phi}(t) = -\frac{\partial H}{\partial x}(x(t), p(t), u(t))$$

as well as the maximisation condition for almost every $t \in [t_0, t_f]$

$$\max_{w \in [-1,1]} H(x(t), p(t), w) = H(x(t), p(t), u(t)) = 0$$

where H is the *hamiltonian* given by

$$H(x, p, u) = u \left(p_1 f_+^1(x_1) + p_2 f_+^2(x_1) - f_+^0(x_1) \right) + p_1 f_-^1(x_1) + p_2 f_-^2(x_1) - f_-^0(x_1)$$

Optimal control

Using the maximisation condition and the definition of H, we have

$$u(t) \begin{cases} = -1 & \text{if } \phi(x_1(t), p(t)) < 0 \\ = 1 & \text{if } \phi(x_1(t), p(t)) > 0 \\ \in [-1, 1] & \text{if } \phi(x_1(t), p(t)) = 0 \end{cases}$$

where the function $\boldsymbol{\phi}$ is defined by

$$\phi(x_1,p) = p_1 f_+^1(x_1) + p_2 f_+^2(x_1) - f_+^0(x_1).$$

Lemma 1

There exists
$$\overline{t} \in [t_0, t_f[$$
 such that $u^*(t) = 1$ for almost every $t \in [\overline{t}, t_f]$.

Objectiv

Indirect resolution

Conclusion

Singular state and singular control

Let us suppose that there exists $I \subset [t_0, t_f]$ of non-zero mesure such that $\forall t \in I, \phi(x_1(t), p(t)) = 0$. Then we look for (x_1, p, u) such that

$$\begin{cases} \phi(x_1, p) = 0 \\ \dot{\phi}(x_1, p) = 0 \\ \ddot{\phi}(x_1, p, u) = 0 \\ H(x_1, p, u) = 0 \end{cases}$$

We can analytically have an expression of $p(x_1)$ and $u(x_1)$ such that

$$\phi(x_1, p(x_1)) = \dot{\phi}(x_1, p(x_1)) = \ddot{\phi}(x_1, p(x_1), u(x_1)) = 0$$

Objective

Indirect resolution

Conclusion

Singular state and control

Hypothesis 1

There exists exactly one state $x_s \in \mathbb{R}^+$ such that

 $H(x_s, p(x_s), u(x_s)) = 0$

Under Hypothesis 1, we numerically find the singular state x_s by using a rootfinding method, the singular control $u_s = u(x_s)$, and the singular costate $p_s = p(x_s)$.

In Julia, we can use the **ForwardDiff** package to get the exact derivative of the inputs functions.

Application 000000	Objectives o	Indirect resolution	Conclusion

We have computed the singular curve

Application	Objectives	Indirect resolution	Conclusion
000000	O	0000●000	

We have to compute the switching and dispersal locus curve

Application 000000	Objectives O	Indirect resolution	Conclusion

We have to compute the switching and dispersal locus curve

Application 000000	Objectives O	Indirect resolution	Conclusion

We have to compute the switching and dispersal locus curve

Objectives

Indirect resolution

Conclusion

Switching and dispersal curves

The switching and the dispersal curves are the solution of S(x) = 0, where S is a function $S \colon \mathbb{R}^2 \to \mathbb{R}, x \mapsto S(x)$.

For instance, for the dispersal curve, this function is defined by

$$S(x) = \varphi_0^+(x) - \varphi_0^{-+}(x)$$

where respectively φ_0^+ and φ_0^{-+} corresponds to the optimal cost associated to the trajectory starting from x with the control u = +1 (resp. u = -1 before hitting the switching curve, and the control u = +1 after).

Moreover, for both curves, we know a point (a, b) such that S(a, b) = 0.

Application Objectives I

Indirect resolution

Differential continuation method

Let us suppose that there exists a function $x_1(x_2)$ such that

$$S(x_1(x_2), x_2) = 0.$$

Since S is constant, we have

$$\frac{\partial S}{\partial x_1}(x_1(x_2), x_2) x_1'(x_2) + \frac{\partial S}{\partial x_2}(x_1(x_2, x_2)) = 0$$

Function $x_1(x_2)$ is the solution of the ODE

$$x_1'(x_2)=\left(rac{\partial S}{\partial x_1}(x_1(x_2),x_2)
ight)^{-1}rac{\partial S}{\partial x_2}(x_1(x_2,x_2)),\quad x_1(b)=a.$$

 $\begin{array}{c} \text{Indirect resolution} \\ \texttt{0000000} \bullet \end{array}$

Differential continuation method

In Julia, packages ForwardDiff and OrdinaryDiffEq work together.

- The gradient of *S* is computed thanks to the **ForwardDiff** package.
- Even if S contains a solution of an ODE, the derivative of S is computed properly (it uses variational equations).
- The numerical integration is stopped when a condition is satisfied by using **Callback**.

Application	Objectives	Indirect resolution	Conclusion
000000	o		●○

Conclusion

We can generate automatically optimal feedback map associated to Problem (OCP), used for membrame filtration systems.

Figure: Optimal synthesis

Application 000000	Objectives O	Indirect resolution	Conclusion ●○

Conclusion

We can easily go further and generate the optimal strategy classification associated to Problem (OCP).

Figure: Classification of optimal strategies

References

Filtration.jl Package : Documentation and more examples

References :

Aichouche, F., Kalboussi, N., Rapaport, A., and Harmand, J. (2020). Modeling and optimal control for production-regeneration systems - preliminary results -.

In 2020 European Control Conference (ECC).

Kalboussi, N., Rapaport, A., Bayen, T., Amar, N. B., Ellouze, F., and Harmand, J. (2019). Optimal control of membrane-filtration systems. *IEEE Transactions on Automatic Control.*

Vroman, T., Beaume, F., Armanges, V., Gout, E., and Remigy, J.-C. (2021). Critical backwash flux for high backwash efficiency: Case of ultrafiltration of bentonite suspensions.

Journal of Membrane Science.