

Optimal synthesis of membrane filtration systems

A Julia package to improve performances by optimal control

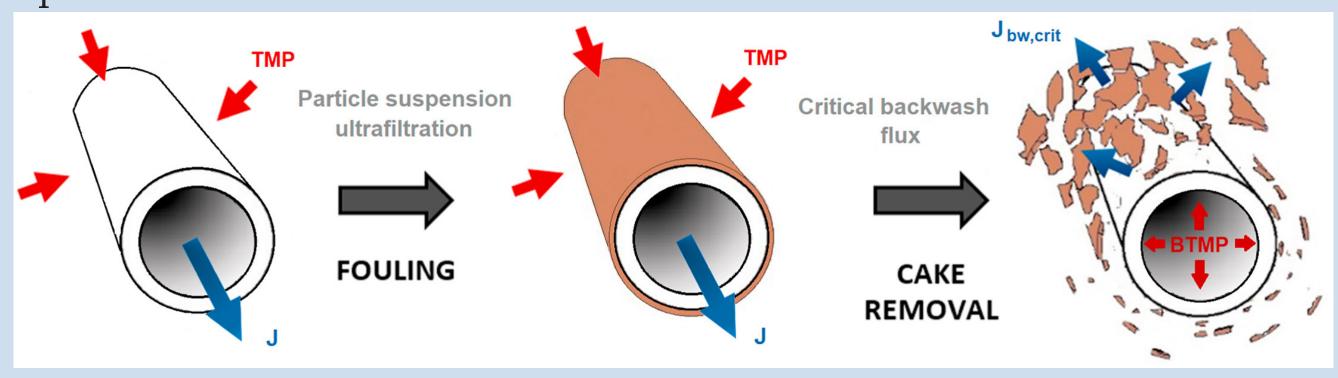
Rémy Dutto^{1,2}, Jérôme Harmand¹, Alain Rapaport²
¹LBE INRAE, Narbonne, ²MISTEA INRAE, Montpellier

Introduction

Filtration.jl package aims to provide an optimal control framework to control membrane filtration systems in order to maximize its efficiency (max volume, min energy, ...). It generates automatically a feedback controller for a large class of problems, where the main functions are user-defined. This package mainly use combination of automatic differentiation (**ForwardDiff.jl**) and resolution of ODE (**OrdinaryDiffEq.jl**).

Membrane filtration system

Membrane filtration systems have to alternate between filtration and backwash phases.



The system is composed by one internal resistance, denoted x_2 and two outputs:

- x^0 has to be minimized at the final time t_f ,
- x_1 which has to reach a target value T at terminal time t_f .

The control $u \in [-1,1]$ represents the mode of the system: u=+1 corresponds to filtration and u=-1 to backwash. Assuming that the dynamic of $x=(x^0,x_1,x_2)$ is user-defined by $f(x_2)$ and $g(x_2)$ respectively in filtration and backwash mode, we are interested in solving

$$\begin{cases} \min_{x,u} x^{0}(t_{f}) \\ \text{s.t. } \dot{x}(t) = \frac{f(x_{2}(t)) + g(x_{2}(t))}{2} + u(t) \frac{f(x_{2}(t)) - g(x_{2}(t))}{2}, \\ u(t) \in [-1, 1], \quad t \in [t_{0}, t_{f}] \text{ a.e.,} \end{cases}$$

where t_f is the first time such that $x_1(t_f) \geq T$.

Main theoretical results

Structure: Thanks to the Pontryagin Maximum Principle and the Green Theorem, under some conditions, the structure of optimal solution can only be one of σ_+ , $\sigma_-\sigma_+$, $\sigma_s\sigma_+$, $\sigma_-\sigma_s\sigma_+$ or $\sigma_+\sigma_s\sigma_+$, where σ_+ is a bang u=+1 arc, σ_- is a bang u=-1 arc, and σ_s is a singular $x_2=\bar{x}_2$ arc with the control

$$u = u_s(\bar{x}_2) = -\frac{f_2(\bar{x}_2) + g_2(\bar{x}_2)}{f_2(\bar{x}_2) - g_2(\bar{x}_2)}.$$

Feedback control: The optimal control can be given in a feedback form by

$$u(x_1, x_2) = \begin{cases} +1 & \text{if } (x_1, x_2) \in \Omega_+, \\ -1 & \text{if } (x_1, x_2) \in \Omega_-, \\ u_s(x_2) & \text{if } (x_1, x_2) \in \mathcal{S}. \end{cases}$$

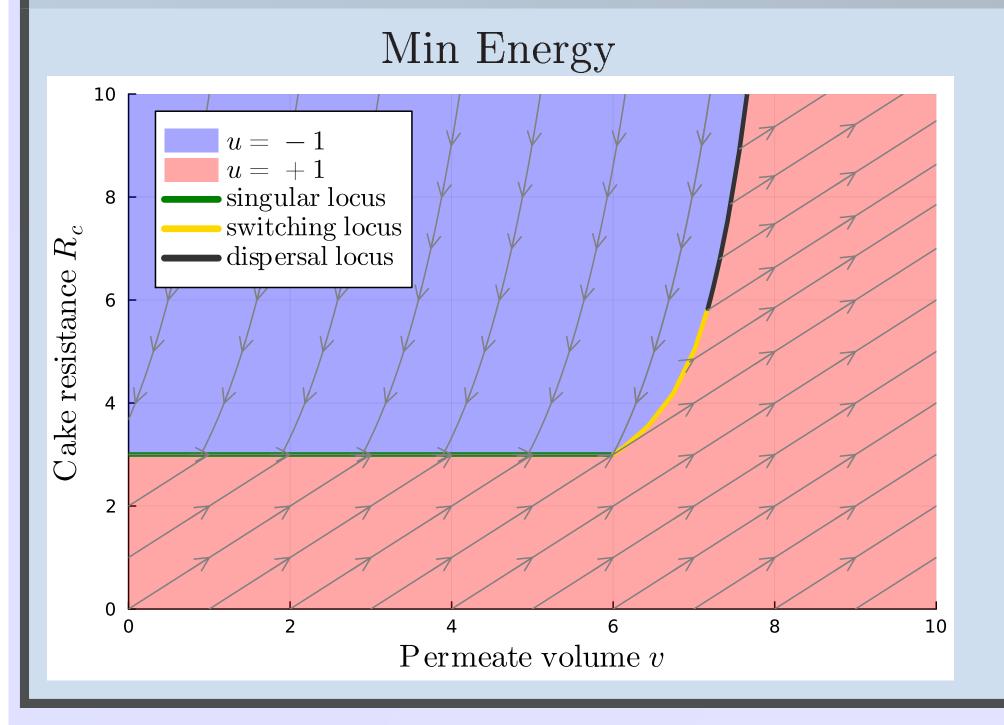
where Ω_+ and Ω_- are two connected sets, separated by singular locus \mathcal{S} , switching locus \mathcal{C} and dispersal locus \mathcal{D} .

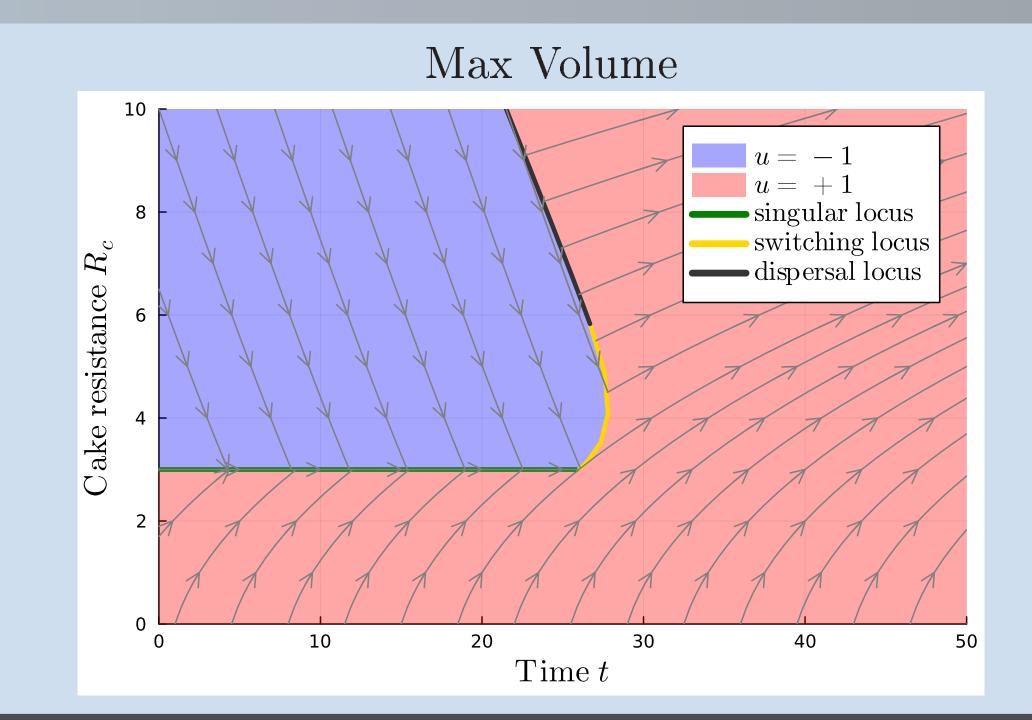
<u>Differential continuation</u>: One can characterize points $(x_1, x_2) \in \mathcal{C}$ (or $(x_1, x_2) \in \mathcal{D}$) as solution of $S(x_1, x_2) = 0$. By using the implicit function theorem, there exists a function ϕ such that $S(\phi(x_2), x_2) = 0$. Function ϕ is thus solution of the following ODE

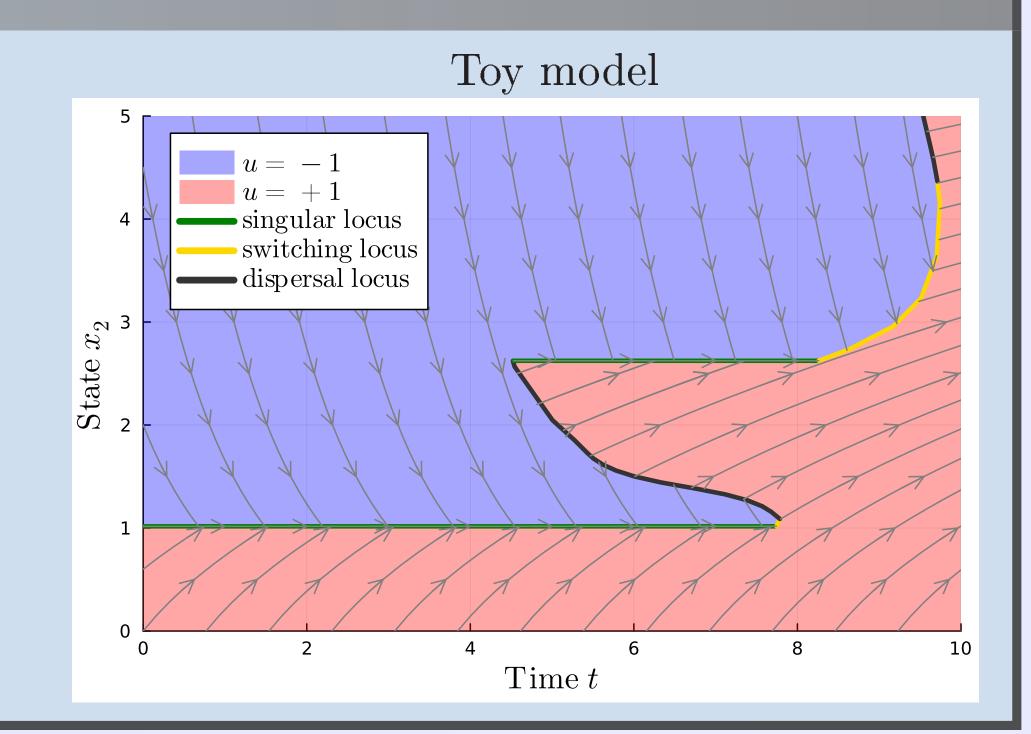
$$\phi'(x_2) = -\left(\frac{\partial S}{\partial x_1}(\phi(x_2), x_2)\right)^{-1} \frac{\partial S}{\partial x_2}(\phi(x_2), x_2), \quad \phi(\bar{x}_2) = \bar{x}_1,$$

where (\bar{x}_1, \bar{x}_2) is a known initial point.

Feedback synthesis





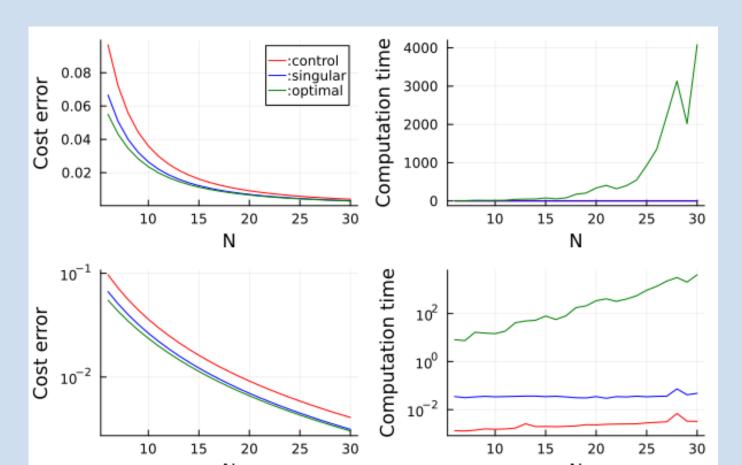


Operational control

When an optimal control has a singular arc, it must be approximated by a bang-bang arc in order to be implemented on a real membrane filtration system.

Given the number of commutation, three methods are proposed:

- approximation of control,
- approximation of state,
- global solution for the discretized problem



Conclusion & Perspectives

Filtration.jl provides automatic generation of optimal synthesis and delivers operational optimal control for membrane filtration systems.

Future works:

- use in real time the control generated by the package,
- fit model parameters to real data,
- study more complex problem (with two internal resistances for instance).

References

- 1] Farouk Aichouche, Nesrine Kalboussi, Alain Rapaport, and Jérôme Harmand. Modeling and optimal control for production-regeneration systems preliminary results -. In 2020 European Control Conference (ECC), 2020.
- 2] Nesrine Kalboussi, Alain Rapaport, Térence Bayen, Nihel Ben Amar, Fatma Ellouze, and Jérome Harmand. Optimal control of membrane-filtration systems. *IEEE Transactions on Automatic Control*, 2019.