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Introduction

Filtration.jl package aims to provide an optimal control framework to control membrane �ltration systems in order to maximize its e�ciency (max
volume, min energy, . . . ). It generates automatically a feedback controller for a large class of problems, where the main functions are user-de�ned. This
package mainly use combination of automatic di�erentiation (ForwardDi�.jl) and resolution of ODE (OrdinaryDi�Eq.jl).

Membrane �ltration system

Membrane �ltration systems have to alternate between �ltration and back-
wash phases.

The system is composed by one internal resistance, denoted x2 and two
outputs :

� x0 has to be minimized at the �nal time tf ,

� x1 which has to reach a target value T at terminal time tf .

The control u ∈ [−1, 1] represents the mode of the system : u = +1
corresponds to �ltration and u = −1 to backwash. Assuming that the
dynamic of x = (x0, x1, x2) is user-de�ned by f(x2) and g(x2) respectively
in �ltration and backwash mode, we are interested in solving

min
x,u

x0(tf )

s.t. ẋ(t) =
f(x2(t)) + g(x2(t))

2
+ u(t)

f(x2(t))− g(x2(t))

2
,

u(t) ∈ [−1, 1], t ∈ [t0, tf ] a.e.,

x(t0) = x0,

where tf is the �rst time such that x1(tf ) ≥ T .

Main theoretical results

Structure : Thanks to the Pontryagin Maximum Principle and the Green
Theorem, under some conditions, the structure of optimal solution can only
be one of σ+, σ−σ+, σsσ+, σ−σsσ+ or σ+σsσ+, where σ+ is a bang u = +1
arc, σ− is a bang u = −1 arc, and σs is a singular x2 = x̄2 arc with the
control

u = us(x̄2) = −f2(x̄2) + g2(x̄2)

f2(x̄2)− g2(x̄2)
·

Feedback control : The optimal control can be given in a feedback form
by

u(x1, x2) =


+1 if (x1, x2) ∈ Ω+,

−1 if (x1, x2) ∈ Ω−,

us(x2) if (x1, x2) ∈ S.

where Ω+ and Ω− are two connected sets, separated by singular locus S,
switching locus C and dispersal locus D.

Di�erential continuation : One can characterize points (x1, x2) ∈ C (or
(x1, x2) ∈ D) as solution of S(x1, x2) = 0. By using the implicit function
theorem, there exists a function ϕ such that S(ϕ(x2), x2) = 0.
Function ϕ is thus solution of the following ODE

ϕ′(x2) = −
(

∂S

∂x1

(
ϕ(x2), x2

))−1
∂S

∂x2

(
ϕ(x2), x2

)
, ϕ(x̄2) = x̄1,

where (x̄1, x̄2) is a known initial point.

Feedback synthesis

Min Energy Max Volume Toy model

Operational control

When an optimal control has a singular arc, it must be approximated by
a bang-bang arc in order to be implemented on a real membrane �ltration
system.

Given the number of commutation,
three methods are proposed :

• approximation of control,

• approximation of state,

• global solution for the dis-
cretized problem

Conclusion & Perspectives

Filtration.jl provides automatic generation of optimal synthesis and de-
livers operational optimal control for membrane �ltration systems.

Future works:

� use in real time the control generated by the package,

� �t model parameters to real data,

� study more complex problem (with two internal resistances for in-
stance).
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